What is Industry 4.0?
Industry 4.0 refers to the fourth industrial revolution, although it is concerned with areas that are not usually classified as industry applications in their own right, such as smart cities.
Generally-speaking, Industry 4.0 describes the growing trend towards automation and data exchange in technology and processes within the manufacturing industry, including:
- The internet of things (IoT)
- The industrial internet of things (IIoT)
- Cyber-physical systems (CPS)
- Smart manufacture
- Smart factories
- Cloud computing
- Cognitive computing
- Artificial intelligence
This automation creates a manufacturing system whereby machines in factories are augmented with wireless connectivity and sensors to monitor and visualize an entire production process and make autonomous decisions.
Wireless connectivity and the augmentation of machines will be greatly advanced with the full roll out of 5G. This will provide faster response times, allowing for near real time communication between systems.
In short, this should allow for digital transformation. This will allow for automated and autonomous manufacturing with joined-up systems that can cooperate with each other.
The technology will help solve problems and track processes, while also increasing productivity.
What is an Example of the Industry 4.0 Revolution?
Industry 4.0 has already been demonstrated through business models such as offline programming and adaptive control for arc welding, taking the process from product design through simulation and onto the shop floor for production.
There are also examples of businesses implementing Industry 4.0 in automotive manufacture and a variety of smart factories across the world.
Industry 4.0 applications today
While many organizations might still be in denial about how Industry 4.0 could impact their business or struggling to find the talent or knowledge to know how to best adopt it for their unique use cases, several others are implementing changes today and preparing for a future where smart machines improve their business. Here are just a few of the possible applications:
Identify opportunities: Since connected machines collect a tremendous volume of data that can inform maintenance, performance and other issues, as well as analyze that data to identify patterns and insights that would be impossible for a human to do in a reasonable timeframe, Industry 4.0 offers the opportunity for manufacturers to optimize their operations quickly and efficiently by knowing what needs attention. By using the data from sensors in its equipment, an African gold mine identified a problem with the oxygen levels during leaching. Once fixed, they were able to increase their yield by 3.7%, which saved them $20 million annually.
Optimize logistics and supply chains: A connected supply chain can adjust and accommodate when new information is presented. If a weather delay ties up a shipment, a connected system can proactively adjust to that reality and modify manufacturing priorities.
Autonomous equipment and vehicles: There are shipping yards that are leveraging autonomous cranes and trucks to streamline operations as they accept shipping containers from the ships.
Robots: Once only possible for large enterprises with equally large budgets, robotics are now more affordable and available to organizations of every size. From picking products at a warehouse to getting them ready to ship, autonomous robots can quickly and safely support manufacturers. Robots move goods around Amazon warehouses and also reduce costs and allow better use of floor space for the online retailer.
Additive manufacturing (3D printing): This technology has improved tremendously in the last decade and has progressed from primarily being used for prototyping to actual production. Advances in the use of metal additive manufacturing have opened up a lot of possibilities for production.
Internet of Things and the cloud: A key component of Industry 4.0 is the Internet of Things that is characterized by connected devices. Not only does this help internal operations, but through the use of the cloud environment where data is stored, equipment and operations can be optimized by leveraging the insights of others using the same equipment or to allow smaller enterprises access to technology they wouldn’t be able to on their own.
While Industry 4.0 is still evolving and we might not have the complete picture until we look back 30 years from now, companies who are adopting the technologies realize Industry 4.0’s potential. These same companies are also grappling with how to upskill their current workforce to take on new work responsibilities made possible by Internet 4.0 and to recruit new employees with the right skills.
How Industry 4.0 technologies are changing manufacturing
Industry 4.0 is revolutionizing the way companies manufacture, improve and distribute their products. Manufacturers are integrating new technologies, including Internet of Things (IoT), cloud computing and analytics, and AI and machine learning into their production facilities and throughout their operations.
These smart factories are equipped with advanced sensors, embedded software and robotics that collect and analyze data and allow for better decision making. Even higher value is created when data from production operations is combined with operational data from ERP, supply chain, customer service and other enterprise systems to create whole new levels of visibility and insight from previously siloed information.
These digital technologies lead to increased automation, predictive maintenance, self-optimization of process improvements and, above all, a new level of efficiencies and responsiveness to customers not previously possible.
Developing smart factories provides an incredible opportunity for the manufacturing industry to enter the fourth industrial revolution. Analyzing the large amounts of big data collected from sensors on the factory floor ensures real-time visibility of manufacturing assets and can provide tools for performing predictive maintenance in order to minimize equipment downtime.
Using high-tech IoT devices in smart factories leads to higher productivity and improved quality. Replacing manual inspection business models with AI-powered visual insights reduces manufacturing errors and saves money and time. With minimal investment, quality control personnel can set up a smartphone connected to the cloud to monitor manufacturing processes from virtually anywhere. By applying machine learning algorithms, manufacturers can detect errors immediately, rather than at later stages when repair work is more expensive.
Industry 4.0 concepts and technologies can be applied across all types of industrial companies, including discrete and process manufacturing, as well as oil and gas, mining and other industrial segments.
Characteristics of a smart factory
Data analysis for optimal decision making
Embedded sensors and interconnected machinery produce a significant amount of big data for manufacturing companies. Data analytics can help manufacturers investigate historical trends, identify patterns and make better decisions. Smart factories can also use data from other parts of the organization and their extended ecosystem of suppliers and distributors to create deeper insights. By looking at data from human resources, sales or warehousing, manufacturers can make production decisions based on sales margins and personnel. A complete digital representation of operations can be created as a “digital twin.”
IT-OT integration
The smart factory’s network architecture depends on interconnectivity. Real-time data collected from sensors, devices and machines on the factory floor can be consumed and used immediately by other factory assets, as well as shared across other components in the enterprise software stack, including enterprise resource planning (ERP) and other business management software.
Custom manufacturing
Smart factories can produce customized goods that meet individual customers’ needs more cost-effectively. In fact, in many industry segments, manufacturers aspire to achieve a “lot size of one” in an economical way. By using advanced simulation software applications, new materials and technologies such as 3-D printing, manufacturers can easily create small batches of specialized items for particular customers. Whereas the first industrial revolution was about mass production, Industry 4.0 is about mass customization.
Supply chain
Industrial operations are dependent on a transparent, efficient supply chain, which must be integrated with production operations as part of a robust Industry 4.0 strategy. This transforms the way manufacturers resource their raw materials and deliver their finished products. By sharing some production data with suppliers, manufacturers can better schedule deliveries. If, for example, an assembly line is experiencing a disruption, deliveries can be rerouted or delayed in order to reduce wasted time or cost. Additionally, by studying weather, transportation partner and retailer data, companies can use predictive shipping to send finished goods at just the right time to meet consumer demand. Blockchain is emerging as a key technology to enable transparency in supply chains.
Industry 4.0: the essence explained in a nutshell
Industry 4.0 is the information-intensive transformation of manufacturing (and related industries) in a connected environment of big data, people, processes, services, systems and IoT-enabled industrial assets with the generation, leverage and utilization of actionable data and information as a way and means to realize smart industry and ecosystems of industrial innovation and collaboration.
So, Industry 4.0 is a broad vision with clear frameworks and reference architectures, mainly characterized by the bridging of physical industrial assets and digital technologies in so-called cyber-physical systems.
A key role is indeed played by the Internet of Things or IoT, in the scope of Industry 4.0 Industrial IoT with its many IoT stack components, from IoT platforms to Industrial IoT gateways, devices and much more.
Yet, it’s not just IoT of course: cloud computing (and cloud platforms), big data (advanced data analytics, data lakes, edge intelligence) with (related) artificial intelligence, data analysis, storage and compute power at the edge of networks (edge computing), mobile, data communication/network technologies, changes on the level of, among others, HMI and SCADA, manufacturing execution systems (MES), enterprise resource planning (ERP, becoming i-ERP), programmable logic controllers (PLC), sensors and actuators, MEMS and transducers (sensors again) and innovative data exchange models all play a key role.
Additionally, the same technologies, such as Robotic Process Automation (RPA), AI (AI engines, machine learning), the meeting of both and so forth that pop up in close to all software areas such as enterprise information management, business process management and applications in the sourcing market are of course showing in IoT-enabled industrial/manufacturing applications and IoT manufacturing platforms as well.
Industry 4.0 is not ‘something’ you realize overnight. Just as is the case with IoT deployments you need a strategic and staged approach.
This is exactly the same as with digital transformation strategy and gets covered in depth when we look at Industry 4.0 strategy and implementation and at the state of Industry 4.0 and maturity of organizations as they move from initial stages and pilots to more innovative approaches on top of the traditional low-hanging fruit in terms of optimization and automation. If you are in a hurry, there is a chapter on Industry 4.0 maturity models and roadmaps.
What are the Details of Industry 5.0?
Industry 5.0 is already being spoken about and involves robots and smart machines allowing humans to work better and smarter.
Esben Østergaard, Universal Robots chief technology officer and co-founder, explained, “Industry 5.0 will make the factory a place where creative people can come and work, to create a more personalized and human experience for workers and their customers.”
By connecting the way in which man and machine work together, estimates say that Industry 5.0 will mean that over 60% of manufacturing, logistics and supply chains, agri-farming, and the mining and oil and gas sectors will employ chief robotics officers by 2025.
The European Economic Social Committee asserts that, “The proliferation of robotic automation is inevitable.